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ABSTRACT

This study examines the subseasonal predictive skill of CFSv2, focusing on the spatial and temporal dis-

tributions of error for large-scale atmospheric variables and the realism of simulated tropical convection.

Errors in a 4-member CFSv2 ensemble forecast saturate at lead times of approximately 3 weeks for 500-hPa

geopotential height and 5 weeks for 200-hPa velocity potential. Forecast errors exceed those of climatology at

lead times beyond 2 weeks. Sea surface temperature, which evolves more slowly than atmospheric fields,

maintains skill over climatology through the first month. Spatial patterns of error are robust across lead times

and temporal averaging periods, increasing in amplitude as lead time increases and temporal averaging period

decreases. Several significant biases were found in the CFSv2 reforecasts, such as too little convection over

tropical land and excessive convection over the ocean. The realism of simulated tropical convection and

associated teleconnections degrades with forecast lead time. Large-scale tropical convection in CFSv2 is more

stationary than observed. Forecast MJOs propagate eastward too slowly and those initiated over the Indian

Ocean have trouble traversing beyond theMaritimeContinent. The total variability of simulated propagating

convection is concentrated at lower frequencies compared to observed convection, and is more fully described

by a red spectrum, indicating weak representation of convectively coupled waves. These flaws in simulated

tropical convection, which could be tied to problems with convective parameterization and associated mean

state biases, affect atmospheric teleconnections and may degrade extended global forecast skill.

1. Introduction

Subseasonal (weekly to monthly) prediction has great

potential value for the energy sector, transportation,

agriculture, and society in general. These temporal

scales lie beyond the theoretical limit of deterministic

weather predictability provided by the initial conditions

(predictability of the first kind; Lorenz 1963, 1975), but

are aided by predictability of the second kind, which

originates from the slowly evolving boundary condi-

tions, such as sea surface temperature (Chu 1999;

Lorenz 1975). Thus, subseasonal forecast skill depends

on both initial conditions and boundary forcing, with the

latter increasingly dominating over the former as the

period of projection lengthens. An important question is

whether the signal from more predictable boundary

forcing is consistently strong enough to outweigh at-

mospheric internal variability at subseasonal time scales

(Kumar et al. 2011).

The deterministic and probabilistic performance of

operational extended forecast systems targeting sub-

seasonal time scales has been the topic of several re-

cent studies. For example, Yuan et al. (2011) showed

that the National Centers for Environmental Pre-

diction (NCEP) Climate Forecast System, version 2

(CFSv2; Saha et al. 2014), improves upon its pre-

decessor (CFSv1) and compares favorably with the

European Centre for Medium-Range Weather Fore-

casts (ECMWF) Variable-Resolution Ensemble Pre-

diction System forecast system (Vitart 2004; Vitart et al.

2008) for temperature and hydrological prediction, al-

though predictive skill is restricted to the first month. An

intercomparison of three operational seasonal ensemble

prediction systems (EPSs) revealed that, while ECMWF

is the leader in terms of weekly averaged precipitation

forecast skill, none of the models provide much skill

after week 1, especially in the extratropics (Li and

Robertson 2015). Roundy et al. (2015) highlighted the

sensitivity of long-range forecast skill to temporal scale,

spatial scale, geographic location, and lead time. The

authors also found that predictive skill is dependent on
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season and El Niño–Southern Oscillation (ENSO)

phase. Other intraseasonal tropical phenomena, such as

the Madden–Julian oscillation [MJO, after Madden and

Julian (1971, 1972)], have also been shown to affect

extended-range predictive skill (Jones et al. 2015).

Other studies have evaluated extended model perfor-

mance for specific temporal scales, geographic locations,

atmospheric phenomena, and error metrics (e.g., Mo

et al. 2012; Lang et al. 2014; Lynch et al. 2014), high-

lighting the need for a comprehensive forecast skill

assessment.

There have been several attempts to improve the skill

of operational seasonal/subseasonal forecast models

through statistical postprocessing. Such efforts include

applying multimodel ensemble means (Dutton et al.

2013; Becker et al. 2014; Wanders and Wood 2016),

dynamical downscaling (Yuan and Liang 2011; Liu et al.

2016), and statistical downscaling (Li et al. 2009; Wu

et al. 2012). While most of these techniques provide

modest improvement upon global dynamical model

skill, other work has shown that purely statistical

forecasts are often comparable in skill to these global

EPSs (Zheng and Frederiksen 2007; Seo et al. 2009).

Together, the works described above suggest that op-

erational subseasonal EPSs are unable to provide sub-

stantial deterministic skill at subseasonal to seasonal

time scales, with postprocessing providing only modest

improvement. There is either an innate lack of pre-

dictability at these time scales or model deficiencies un-

dermine the potential to capitalize on the predictability

supplied by slowly varying boundary conditions.

A potential failure mode of global models that might

explain, at least in part, their lack of subseasonal skill is

their unrealistic representation of tropical convection.

It is well established that convection in the tropics has a

considerable influence on global weather through at-

mospheric teleconnections (e.g., Trenberth et al. 1998;

Alexander et al. 2002). Operational forecast systems,

however, struggle to produce realistic distributions, in-

tensities, and/or propagation characteristics of tropical

convection. An example is shown in Fig. 1, which com-

pares the derived tropical precipitation from the Trop-

ical Rainfall Measuring Mission (TRMM) 3B42 product

with that simulated by the NOAA/NWS Global Fore-

cast System (GFS) model. The stark contrast between

the observed and simulated precipitation demonstrates

the well-documented tendency for models to produce

more frequent rainfall of lower intensity than observed

(e.g., Stephens et al. 2010).

Tropical convection and the associated teleconnec-

tions serve as an ‘‘atmospheric bridge’’ between rela-

tively predictable tropical SSTs (and other slowly

evolving phenomena like the MJO) and midlatitude

circulations. Thus, with unrealistic convection, extra-

tropical forecasts receive problematic low-frequency

information from the tropics, limiting deterministic

predictability to the period of influence from the initial

conditions (roughly the first 1–2 weeks of the forecast).

This study assesses the limits of CFSv2 global forecast

skill on several time scales and examines the structure

and evolution of tropical convection produced by this

modeling system. Biases in the model’s mean state, and

roles they might play in degrading the behavior of sim-

ulated convection and overall forecast quality, are also

discussed.

2. Data and methods

a. The Climate Forecast System, version 2

The forecast model examined in this study, the NCEP

CFSv2 (Saha et al. 2014), is the primary operational

subseasonal/seasonal forecast system used in the United

States. CFSv2 is a fully coupled atmosphere–ocean

modeling system. The reforecast configuration (de-

scribed below) for CFSv2 consists of the GFS at T126

(;0.9378) resolution for the atmospheric component

and the Geophysical Fluid Dynamics Laboratory Mod-

ular Ocean Model at 0.258–0.58 resolution for the ocean

FIG. 1. Meridionally averaged (58S–58N) precipitation rate dur-

ing the period 13 May–19 Jun 2017. Data above the black ‘‘Begin

Forecast’’ line are from the TRMM 3B42 product and data below

are from the 0000 UTC GFS forecast initialized on 29 Apr.

(Figure courtesy of Michael Ventrice.)
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component. The system also uses a two-layer sea ice

model and the four-layer Noah land surfacemodel. Saha

et al. (2014) provide details of the operational and re-

forecast configurations of CFSv2.

CFSv2 was run over an extended reforecast period to

provide long-term model performance statistics. While

the operational configuration for CFSv2 includes 16 runs

per day, only 4 runs were initialized daily during the

reforecast period. This configuration, outlined in Fig. 2,

consists of four 9-month runs initialized (at 0000, 0600,

1200, and 1800 UTC) every 5 days, and a 0000UTC one-

season (3 month) run with three subsequent 45-day runs

(0600, 1200, and 1800 UTC) initialized during the in-

tervening 4 days. CFSv2 reforecasts from the 1982–2008

period are evaluated. The verified forecasts in section 3

are 9-month, 4-member ensemble means initialized ev-

ery 5 days from 1982 to 2008, providing 1951 forecasts.

The CFS Reanalysis (CFSR; the initialization for the

CFSv2 reforecasts) data are used to verify the refor-

ecasts in this study.

b. Verification metrics and temporal scales

In this study, we apply three common error metrics

to assess forecast performance: mean absolute error

(MAE), anomaly correlation (AC), and bias. CFSR

climatology (1982–2010) is used to compute anomalies

for the forecasts and analyses. Persistence forecasts are

created for various averaging periods by taking the

preceding period’s observed anomaly pattern (e.g., for a

weekly forecast, the anomaly pattern from the past

7 days) and using that as the forecast for all future lead

times. The CFSv2 reforecasts are evaluated for a range

of averaging periods: 1 day, 1 week, 4 weeks, and

12 weeks. AnX-week forecast is calculated at lead-Y (in

days) by taking the average of all the daily forecasts

from lead-Y to lead-(Y1 7X). For example, the 4-week-

averaged (‘‘monthly’’) forecast at a lead of 21 days is an

average of all the daily forecasts from lead-21 to lead-49.

The lead-dependent mean bias is removed from all

forecasts evaluated in this study.

c. Techniques for analyzing tropical convection

Several approaches are used to evaluate CFSv2

tropical convection. The first is a simple compositing

technique that determines extratropical teleconnection

patterns associated with ‘‘tropical convective events.’’

These events are defined as days when some tropical

region (e.g., the Indian Ocean), delimited by a 308 by 308
box, experiences anomalously active convection. To find

such dates, daily outgoing longwave radiation (OLR)

anomaly fields from CFSR are bandpass filtered

(20–100-day periods) to highlight intraseasonal time

scales, and then spatially averaged. Convective dates are

recorded when a negative spatially averaged anomaly

(for the box noted above) is in the lower quartile of the

distribution. Only dates in boreal winter (DJF) are used,

yielding a sample size of roughly 140 events. Analyzed

and forecast patterns of tropical convection associated

with these events are then determined by compositing

CFSR and CFSv2 weekly averaged OLR anomalies

about the recorded dates. Similarly, the extratropical

teleconnection pattern is found by compositing weekly

Northern Hemisphere (NH) Z500 anomalies for the

same dates. Composites are made for several temporal

lags from the convective dates to show the time evolu-

tion of the patterns. Running means from the preceding

120 days are removed from the weekly OLR and Z500

fields to filter out low-frequency variability [as in

Wheeler and Hendon (2004) and Adames and Wallace

(2014)]. Reanalysis data are used to compute these

running means because the reforecasts have no in-

formation prior to initialization.

Lag regression is also employed to analyze pro-

pagation of tropical convection and related moisture

anomalies; different anomaly fields (here, OLR and

precipitable water) are regressed onto a standardized

time series of area-averaged OLR at different temporal

lags. The fields and time series use weekly averaged

CFSR and CFSv2 grids with the low-frequency vari-

ability removed as detailed above. The spatial domain

used to create the standardized OLR time series is the

eastern Indian Ocean (58S–58N, 758–858E).
The methodology for calculating wavenumber–

frequency OLR power spectra is adapted from the

procedure in Yasunaga and Mapes (2012). Here, daily

averaged OLR data from the NOAA Advanced Very

High Resolution Radiometer (AVHRR; 1974–2013),

CFSR reanalysis (1982–2008), and the last 90 days of

each CFSv2 9-month reforecast (1982–2008) are used.

First, the seasonal cycle is removed from the daily av-

eraged OLR data by subtracting the CFSR climatology.

Second, the data are partitioned into equatorially sym-

metric and antisymmetric components. The symmetric

component is calculated simply by taking the mean

OLR anomaly from 158S to 158N while the antisym-

metric component is the NH mean minus the SH mean

divided by 2 (where NH and SH are 08–158N and 158S–
08, respectively). Third, the anomaly time series are

FIG. 2. CFSv2 reforecast configuration [adapted from Saha et al.

(2014)].
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divided into 90-day segments with a 65-day overlap; the

mean and linear trend of these segments are removed

and time series are tapered to zero using a Hann taper

algorithm. The CFSv2 segments are taken from the last

90 days of reforecasts initialized 25 days apart. Fourth,

the power spectra are computed for each segment (via

fast Fourier transform), averaged over all the segments,

and smoothed with a 1–2–1 filter in the frequency di-

mension. Finally, to highlight the power peaks, these

raw power spectra are normalized by dividing out the

background spectrum as inHendon andWheeler (2008).

This gives signal strength relative to the background

spectrum, which is calculated by repeatedly applying a

1–2–1 filter to the raw power spectra, assuming a red

noise process for each wavenumber.

3. Reforecast skill assessment

We examine the ability of CFSv2 to forecast several

large-scale geophysical fields: 500-hPa geopotential

height (Z500), 200-hPa velocity potential (CHI200), and

sea surface temperatures (SST). These parameters were

chosen for verification instead of surface fields because

boundary layer details and resolution-dependent fea-

tures like topography play less of a role in the quality of

their forecast. Further, if large-scale flow patterns are

skillfully predicted, then an improved forecast of a sur-

face field, such as 2-m temperature, can be achieved

through dynamical downscaling (Yuan and Liang 2011).

Z500 is a useful analog for midlatitude circulation,

CHI200 highlights large-scale tropical convective fea-

tures, and SST is a lower boundary condition that drives

many global-scale atmospheric circulations. Unless

stated otherwise, the 1982–2008 mean bias was removed

from all CFSv2 reforecasts.

Figure 3 shows the unconditional MAE (left column)

andAC (right column) time series for the debiased Z500

(top row), CHI200 (middle row), and SST (bottom row)

forecasts as a function of lead time and averaging period

(colors). The Z500 MAE and AC were averaged over

the NH midlatitudes (308–708N) while the skill metrics

for CHI200 and SST were averaged over the tropics

(108S–108N). The Z500 (solid lines) reforecast MAE

plateaus roughly 2–3 weeks into the forecast for the

shortest averaging periods and progressively earlier at

longer time scales. This is reflected in the AC time series

as well. Such flattening is an indication of error satura-

tion: when the influence of the initial conditions fades

because of the limitations of intrinsic predictability and

systematic model errors. The ensemble-meanMAEof a

perfect, infinitely large ensemble would saturate at the

value of climatological forecast MAE (indicated by

the broad dashed lines), while a single deterministic

forecast would theoretically saturate at twice that value

(Holton and Hakim 2012, 485–486). In this case—

a small four-member ensemble with unconditional bias

removed—the errors saturate at a value larger than the

climatological MAE because of conditional biases

within the forecasts (Murphy 1988; Goddard et al. 2013;

Li andRobertson 2015). Thus, with this small ensemble,

skill is lost when the forecast MAE (solid) exceeds the

climatological MAE (broad-dashed), which is sooner

than the forecast error saturates. For midlatitude Z500,

the 1-day, 1-week, 4-week, and 12-week forecasts lose

skill over climatology at leads of 14 days, 9 days, 5 days,

and 0 days, respectively. The tropical CHI200 forecasts

(Fig. 3, middle row) lose skill over climatology at similar

leads, although errors saturate later in the forecast, in-

dicating potential extended predictability from the ini-

tial conditions. The higher saturation AC values (nearly

0.3 for the 12-week forecasts) for CHI200 suggest a

greater contribution from the boundary conditions to

long-range predictability. Both types of predictability

are likely higher in the tropics than in the extratropics,

resulting in higher skill at long lead times (Zhu et al.

2014).

Tropical SST forecasts (bottom row) exhibit skill over

climatology at longer lead times: 2–5 weeks, depending

on the averaging period. Conditional (e.g., seasonal)

SST biases are particularly strong (not shown), con-

tributing to this loss of skill. Further, the SSTMAE does

not saturate in the time series shown here, implying that

SST predictions from a larger ensemble would remain

skillful for at least two months (for all averaging pe-

riods). This is expected as the slowly varying nature of

SST renders it more innately predictable than atmo-

spheric fields.

The ‘‘monthly’’ (4 week; purple lines) Z500 and SST

forecastAC time seriesmatchwellwith theCFSv1monthly

Z200 and SST statistics presented in Kumar et al. (2011).

While the magnitude of the error varies by season (e.g.,

higher Z500 MAE values in the winter hemisphere), a

monthly breakdown of these time series (not shown)

reveals that the error saturation times noted above are

robust across all seasons. There is also a seasonal de-

pendence for the AC scores, highlighting a slight in-

crease in extended skill for all three parameters during

the NH winter (not shown). The short-dashed lines in

Fig. 3 represent the error statistics for persistence fore-

casts. For all parameters, averaging periods, and lead

times, persistence forecasts are, on average, inferior to

dynamical predictions.

The geographical distributions of MAE are similar

across averaging periods (Fig. 4). MAE is only shown

at a lead time of 3 weeks because the patterns only

change in magnitude with lead time (i.e., larger errors at
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longer leads). For Z500 forecasts (top row), the largest

errors are found in the midlatitude storm tracks. The

CHI200 MAE distribution (middle row) highlights the

tropics as the location of the largest errors, with maxima

in the southeastern Pacific, west Pacific, and the Indian

Ocean. The largest SST errors (bottom row) are found

in the El Niño SST region of the east Pacific and in the

western boundary current regions. For all three vari-

ables, the highest MAE values are found where ob-

served internal variability is high.

Figure 5 shows the spatial distributions of the week-4

forecast AC (left column) and bias (right column). Here,

only the weekly averaged forecast statistics are shown

because the patterns of AC and bias vary only in mag-

nitude for different averaging periods. In agreement

with Fig. 3, the Z500 AC pattern reveals a general lack

of skill in the midlatitudes for week 4. The only large

positive AC values are in the tropics, where Z500 varies

little, and in the central-eastern Pacific subtropics, per-

haps in association with ENSO. In contrast, the week-4

CHI200 forecasts exhibit modest skill in the Maritime

Continent region and in the central Pacific, likely asso-

ciated with ENSO-related convection. SST forecasts

produce much higher AC scores globally than the other

parameters for week 4, due to the more slowly varying

nature of SSTs. The equatorial central-eastern Pacific

is a particularly skillful region because of the model’s

ability to reproduce ENSO variability.

Model bias (right column) is a useful skill metric since

it informs about systematic forecast deficiencies. For

FIG. 3. Spatially averaged (left) MAE and (right) AC vs lead time for (top) NH midlatitude Z500, (middle)

tropical CHI200, and (bottom) tropical SST forecasts during the 1982–2008 period. Solid lines are the CFSv2

9-month reforecasts, broad dashed lines are the CFSR climatology, and short dashed lines are persistence forecasts.

Colors indicate the averaging time scale.
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Z500, the model tends to have a negative height bias in

the tropics and midlatitudes, with near-zero or positive

height biases near the poles. The forecasts also accentu-

ate the Southern Ocean wave pattern and the Aleutian/

Icelandic lows in the NH. These biases occur most

strongly during the respective hemisphere’s winter season

(not shown). CFSv2 CHI200 exhibits a positive bias over

equatorial landmasses (central Africa, Southeast Asia,

and northern South America), reflecting underproduction

of convection in these regions (Fig. 9). Further, the model

produces too much convection in the Indian Ocean and

equatorial west Pacific. The convective bias in the south-

central Pacific is likely a manifestation of CFSv2’s accen-

tuated South Pacific convergence zone (Silva et al. 2014), a

symptom of the double-intertropical convergence zone

(ITCZ) issue common to many coupled climate models

(Lin 2007).

The SST bias map (Fig. 5, bottom-right panel) reveals

several interesting features. Equatorial SSTs are too

cold in CFSv2, especially during boreal summer (not

shown) when the Pacific cold bias extends west of

the international date line. This overextension of the

cold tongue is associated with the aforementioned

double-ITCZ problem (Lin 2007). The warm SST biases

off the west coasts of southeast North America, north-

ern South America, and southern Africa reflect the

model’s inability to properly simulate persistent marine

stratocumulus, which is confirmed by the excessive OLR

(i.e., lack of clouds) in those regions (Fig. 9, top-left

panel). Warm waters associated with western boundary

currents are too close to shore in CFSv2. Finally, the

alternating warm and cold biases in the Southern Ocean

SSTs suggest an unrealistic representation of the cli-

matological meridional meanders in the Antarctic Cir-

cumpolar Current (Chelton et al. 1990). An additional

feature of these maps is the dissimilarity between the

CHI200 biases and SST bias distributions. If errors in

large-scale convection were forced primarily by mis-

representation of SST, warm (cold) SST biases would be

superimposed with negative (positive) CHI200 biases.

Because this is not the case, it appears that the biases in

CFSv2’s large-scale convection are not driven directly

by errors in the ocean temperature.

While, on average, the skill of CFSv2 beyond two

weeks is limited, there are circumstances under

which the model’s deterministic skill is enhanced.

FIG. 4. CFSv2MAE for the (left) daily, (middle) 1-week, and (right) 4-week averaged reforecasts of (top) Z500, (middle) CHI200, and

(bottom) SST at a 3-week lead time. High latitudes are excluded from the SST charts because of noisy, high-amplitude errors from sea ice

fluctuations.
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The ENSO signal, for example, is well documented

(e.g., Rasmusson andWallace 1983) and can boost the

accuracy of global forecasts (e.g., Kim et al. 2012).

Time series and corresponding probability density

functions (PDFs) of spatial AC scores for week-5

forecasts of NH Z500, tropical CHI200, and tropical

SST as a function of ENSO phase are shown in Fig. 6.

The strong 1982/83 and 1997/98 El Niño events are man-

ifested as skill peaks in the three time series, suggesting

that stronger ENSO events yield greater predictability.

The PDFs reveal that, for the atmospheric parameters

(Z500 and CHI200), El Niño events (when the CFSR

Niño-3.4 index exceeds 1.0) significantly boost the skill
of extended forecasts, especially in the tropics. Fore-

casts during La Niña events (when Niño-3.4 , 21.0),

however, are virtually indistinguishable from other

forecasts in terms of skill performance. SST skill, on the

other hand, is improved during both El Niño and La

Niña events. Thus, while both phases of ENSO are

skillfully forecasted by the CFSv2, only El Niño events

produce a predictable atmospheric signal that enhances

global skill.

4. Forecast tropical convection

a. CFSv2 convective events and teleconnections

As noted previously, convection in the tropics can

have a significant impact on global weather and climate

through atmospheric teleconnections. Here, we in-

vestigate how the CFSv2 teleconnection patterns asso-

ciated with convective anomalies change with lead time.

As outlined in section 2, these teleconnection patterns are

found by compositing weekly averaged boreal winter

(DJF) Z500 anomalies using convective events in several

tropical regions. An IndianOcean (IO) convective event,

for example, is recorded when the 20–100-day bandpass-

filtered CFSR OLR anomaly averaged in the IO region

(158S–158N, 708–1008E) is within the lower quartile of

the distribution. Weekly averaged OLR anomalies in the

Indo-Pacific warm pool are also composited about the

DJF convective dates.

The OLR composites and associated NH Z500 tele-

connection patterns are shown for CFSR analyses (left

column) and CFSv2 reforecasts (right column) initialized

on the IO convective dates for different lead times (Fig. 7).

FIG. 5. (left) AC and (right) unconditional bias for the week-4 (top) Z500, (middle) CHI200, and (bottom) SST

reforecasts.
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The analyzed convection associated with these events

(top-left panel, green box) looks as expected: con-

vectively active in the IO region with a preceding

suppressed anomaly in the west Pacific. Over time (left

column, subsequent rows), the active convection

slowly moves eastward over the Maritime Continent

and into the west Pacific. The composited convective

anomaly patterns from the CFSv2 reforecasts (right

column, green boxes) reveal some important de-

partures from the analyzed patterns. During weeks 1

and 2, the reforecasts exhibit much less equatorial In-

dian Ocean convection than observed in CFSR. Also,

the eastward propagation of the anomalies in CFSv2 is

slower than those in CFSR. The green r values show

the steady decline of reforecast convective pattern skill

with lead time.

The analyzedNHweekly Z500 teleconnection pattern

(top-left panel, red box) consists of alternating ridges

and troughs, reminiscent of the classic Pacific–North

American (PNA) teleconnection pattern. Comparing

the CFSR and CFSv2 teleconnections, we see that the

reforecasts perform well through week 2 (r . 0.8), but

fail to capture the week-3 and week-4 patterns.

The evolution of CFSv2 warm pool convection and

NH teleconnection pattern correlation with lead time is

shown in Fig. 8 for convective events in the IO,Maritime

Continent (MC; 158S–158N, 1108–1408E), and west Pa-

cific (WPac; 158S–158N, 1508E–1808). For all three re-

gions, the reforecast skill at reproducing both the OLR

pattern and Z500 pattern declines with lead time. The

rate at which the r scores for the tropical and extra-

tropical patterns decline is also dependent on where the

convection occurs. For example, the teleconnection

pattern for MC events degrades far more rapidly than

for IO and WPac events.

b. The tropical mean state in CFSv2

Before examining the behavior of propagating tropi-

cal convection in CFSv2 forecasts, it is important to

understand the systematic deficiencies in the model’s

mean state. These biases lend insights into physical

processes that are handled improperly by the model.

FIG. 6. (left) SpatialAC time series and (right) the associated probability densities (calculatedwith kernel density

estimation) for week-4 (top) Z500, (middle) CHI200, and (bottom) SST reforecasts. Green represents all refor-

ecasts in the 1982–2008 period, red dots are only the El Niño events, and blue dots are only the La Niña events.

Horizontal dashed lines indicate the mean value of the PDF with the corresponding color.
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The middle-right panel of Fig. 5 suggests that the fore-

casts produce too little convection over tropical land and

too much over the ocean. The CFSv2 week-4 OLR and

precipitation rate (PRATE) biases (Fig. 9; top two rows)

mirror the idea of a systematic terrestrial/marine defect

in simulated convection. From a large-scale perspective

(left column), the forecasts generally produce too much

convection/precipitation, except over tropical land re-

gions and the equatorial east Pacific. The latter is asso-

ciated with the exaggerated equatorial SST cold tongue

and the accompanying double ITCZ, which is apparent

in the excessive precipitation north and south of the

equator. The Indo-Pacific warm pool appears to have a

particularly large bias in convection/precipitation. An

expanded view over this region (right column) reveals

how stark the contrasting land–sea biases are; the indi-

vidual islands of the Maritime Continent (as well as

Southeast Asia and northern Australia) clearly exhibit a

dry bias, with excessive precipitation over the surrounding

waters.

The biases in tropical moisture are of opposite

sign, as seen in the precipitable water (PWAT, or

FIG. 7. Weekly averaged (left) CFSR and (right) CFSv2OLR (green boxes) and Z500 (red boxes) DJF anomalies composited about IO

convective events. Rows represent composites for the four weeks following IO convection onset. The purple box indicates the IO region

over which the bandpass-filtered CFSROLR anomalies were averaged to determine the convective dates. The green (red) r values above

each CFSv2 panel is the pattern correlation coefficient between CFSR and CFSv2 for the composites in the green (red) boxes at each lead

time. Stippling indicates a composite anomaly that is significantly different from zero at 95% confidence level.
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column-integrated water vapor) bias maps (bottom

row). CFSv2 reforecasts exhibit too little moisture

over most of the deep tropics. The Maritime Conti-

nent region, where the climatological PWAT values

are highest globally, is especially moisture-deficient

over both land and sea. A possible mechanistic ex-

planation for these biases in convection and moisture,

and a discussion of their potential impacts on propa-

gating convection and global circulation, is offered in

section 5.

c. Propagating tropical convection

In this section, the nature of simulated CFSv2 tropical

convection, and its dependence on lead time, is exam-

ined. For this analysis, only the 0000 UTC member of

each 9-month reforecast is used to avoid ‘‘washing out’’

signals by ensemble averaging at long lead times. Av-

eraging CFSv2 weekly CHI200 anomaly forecasts from

108S to 108N,we useHovmöller diagrams to examine the

fidelity of simulated, propagating convection evolution

with lead time.

For a single forecast (initialized on 2 November 1987;

Fig. 10), CFSv2 produces relatively realistic large-scale

propagation early in the forecast, but slowly propagating

or stationary anomalies at extended lead times. An ex-

amination of numerous forecast periods (not shown)

reveals a tendency for propagating anomalies to weaken

or halt when crossing the Maritime Continent region, a

problem that has been previously documented in CFSv2

(e.g., Wang et al. 2014). At longer lead times, some of

the previously highlighted convective biases, such as the

dry bias over equatorial South America (;608W), are

evident in these individual forecasts.

The profound impact of ENSO on large-scale con-

vection forecasts is apparent from the Hovmöller per-
spective. An example, the 1997/98 El Niño event, is

shown in both CFSR analyses and the CFSv2 forecast

initialized on 2 November 1997 (Fig. 11). The SST-

forced signal of enhanced convection in the east Pacific

and suppressed convection in the west Pacific is the

dominant feature during this event. In this regard, the

forecast performs quite well at all lead times. The few

propagating features embedded within the background

ENSO anomalies (e.g., the eastward-propagating nega-

tive anomaly during January–December) are weakly

present or absent in the CFSv2 forecast. Since these

transient anomalies are dwarfed by the ENSO signal,

the model is able to produce a useful extended forecast

of the CHI200 field during this El Niño event (and

others, as shown in Fig. 6).

To secure a more general insight into the ability of

CFSv2 to realistically simulate propagating convection,

we constructed a reforecast composite about a common

convective event: MJO initiation. The MJO onset dates

are days when the AVHRR 20–100-day bandpass-

filtered OLR anomaly in the Indian Ocean was more

than one negative standard deviation from the mean, as

in D. Kim et al. (2014). There were 163 such events

during the 1982–2008 reforecast period. Weekly CFSR

and bias-removed CFSv2 CHI200 Hovmöller compos-

ites about these MJO initiation dates (phases 2–3) are

shown in Fig. 12. Reforecasts were composited based on

their initialization date relative to the MJO convective

dates described above. As the amount of time between

forecast initialization and MJO onset increases, the

forecast composite MJO signal becomes weaker. There

is essentially no composite anomaly signal for the runs

initialized more than 30 days before MJO initiation,

consistent with the approximate 20-day CFSv2 MJO

prediction skill limit suggested byWang et al. (2014) and

H.-M. Kim et al. (2014). In contrast, when the forecasts

are initialized at the onset of MJO convection (0-day

lag), the magnitude and zonal location of the enhanced

Indian Ocean convection are well predicted. However,

even at these very short lead times, the propagation

speed of the convection is slow compared to the ana-

lyses, and the convection is unable to traverse the

Maritime Continent into the west Pacific. These de-

ficiencies in MJO propagation, the latter coined the

‘‘Maritime Continent barrier effect’’ (e.g., Inness and

Slingo 2003), are not unique to CFSv2, having been

FIG. 8. Pattern correlation coefficients, as shown in Fig. 7, vs lead

time for warm pool OLR (green) and NH Z500 (red) composited

about IO (circles), MC (squares), and WPac (triangles) convective

events.
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noted in several other global models (Fu et al. 2013; H.-M.

Kim et al. 2014).

An alternative approach to analyzing MJO-like con-

vection and propagation is performing lag regressions

on the analyzed/predicted OLR and PWAT fields. The

method, detailed in section 2, involves regressing, at

different lags, weekly and meridionally averaged OLR

and PWAT anomaly analyses and forecasts onto a time

series of standardized weekly OLR anomalies averaged

over the eastern Indian Ocean. The OLR and PWAT

fields, and the corresponding standardized OLR time

series, were taken from CFSR and CFSv2 reforecasts at

various lead times. The OLR–OLR (shading) and

OLR–PWAT (contours) lag regressions show a clear

degradation of the temporal behavior of convection as

lead time increases (Fig. 13). By week 2, the reforecast

lag regressions indicate nearly stationary convection. At

subsequent lead times, the regression values over the

Indian Ocean increase further, with only slight in-

dication of propagation eastward over and beyond the

Maritime Continent (as in the CFSR regression map).

To estimate an ‘‘effective’’ MJO propagation phase

speed, a linear fit was computed for three points, each

indicating a local longitudinal maximum in the re-

gression values temporally averaged over 10 lag days

[adapted, though significantly altered, fromAdames and

Kim (2016)]. The slopes of the fit lines (recorded above

each panel, in m s21) indicate the propagation phase

speeds computed from the OLR–OLR (green) and

OLR–PWAT (pink) lag regression maxima. This

method produces an MJO phase speed in CFSR that

agrees with the observed value of 5m s21. The week-1

CFSv2 reforecasts exhibit a similar propagation speed,

although slightly slower. At other lead times, the com-

puted phase speed (,1ms21) is drastically slower than

observed because it is impacted not only by the change

in propagation of MJO convection packets, but also the

Maritime Continent barrier effect and the model’s ten-

dency to produce more stationary convection at longer

lead times.

We can broaden the scope from MJO events to all

propagating features by decomposing the analyzed and

FIG. 9.Week-4 (top) OLR, (middle) PRATE, and (bottom) PWAT reforecast bias distributions for (left) the entire

globe and (right) just the Maritime Continent region.
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simulated daily convection variance into space–time

power spectra (as in Wheeler and Kiladis 1999). For the

CFSv2 reforecasts, the last 90 days of each 9-month run

was used for power spectrum computation, allowing an

analysis of the spectral qualities of the model in ‘‘free-

running mode,’’ well beyond the influence of the initial

conditions. See section 2 for more details.

The raw power spectra for both the symmetric and

antisymmetric component of the OLR (Fig. 14) show

the differences in the spectral qualities of observed

(AVHRR; top left), analyzed (CFSR; top right), and

simulated (CFSv2; bottom left) convection. CFSR and

CFSv2 both exhibit more overall variance in daily

tropical OLR than observed, with power generally

higher at all wavenumbers and frequencies compared to

AVHRR. In contrast to both the observations and an-

alyses, the free-running CFSv2 produces too much low-

frequency, or slow-moving, tropical convection, as seen

in the higher concentration of power in the lower

portion of the diagram. To illustrate, the ratio between

raw CFSv2 and CFSR power (bottom-right panel) in-

dicates increased power at low frequencies and de-

creased power at high frequencies. The east–west ratio

(EWR), a common metric used to gauge the presence

of the MJO in general circulation models, is the ratio of

the raw power in the 30–90-day period range between

wavenumbers 1 through 6 (eastward propagating)

and 21 through 26 (westward propagating). The ob-

served OLR EWR is roughly 1.9, while the CFSR

and CFSv2 each have an EWR just over 1.4. This im-

plies that both the analyses and forecasts contain too

much westward-propagating convection in the MJO

wavenumber–frequency domain. In fact, Fig. 14 suggests

that the analyses and forecasts exhibit too much con-

vection at all wavenumbers and frequencies, especially

for westward-propagating features. The differences be-

tween the observed (AVHRR) and analyzed (CFSR)

convection could be caused by quickly developing

FIG. 10. Weekly CHI200 anomalies averaged from 108S to 108N during the October 1987–May 1988

period. CHI200 anomaly fields are from (left) CFSR and (right) one single CFSv2 reforecast initialized at

0000 UTC 2 Nov 1987.
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errors/biases imparted by parameterized processes in

the model.

Figure 15 shows the power spectra of the symmetric

component of the tropical OLR, normalized by the

background ‘‘red’’ spectrum. This allows one to examine

the convective phenomena that are distinct from the

background noise (e.g., convectively coupled tropical

waves). For example, prominent structures in the

AVHRR spectrum include the MJO and Kelvin waves

for eastward-propagating convection, and equatorial

Rossby and tropical depression waves for westward-

propagating convection. The main features that distin-

guish the CFSR spectrum from theAVHRR spectrum are

slightly reduced power in the MJO and Kelvin waves (i.e.,

the eastward-propagating features) and increased power in

the westward-propagating features, as mentioned above.

The free-runningCFSv2, in comparison to theCFSR, lacks

distinct power peaks for the MJO and Kelvin waves.

Moreover, both eastward- and westward-propagating

features have greatly reduced signal strength compared

to the background spectrum, indicating a convective

spectrum more fully described by red noise than the ana-

lyzed/observed spectra. These deficiencies in the model’s

ability to produce realistically propagating tropical con-

vection at longer lead times could be an important factor in

the limited global subseasonal forecast skill described in

section 3.

5. Discussion

a. Parameterized convection and model biases

The convective parameterizations used in global

modeling systems have been shown to poorly represent

certain aspects of convection, such as propagation and

the diurnal cycle (Yang and Slingo 2001; Guichard et al.

2004). Such deficiencies in convection schemes could

affect long-range teleconnections and thus degrade ex-

tratropical forecasts. Consistent with this hypothesis,

FIG. 11. As in Fig. 10, but for the October 1997–May 1998 period and (right) the CFSv2 reforecast was initialized at

0000 UTC 2 Nov 1997.
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Vitart (2014) suggested that improvements in extended

ECMWF global forecast skill over the past decade were

primarily due to changes in model physics (and the

subsequent improvement of simulated MJOs) rather

than resolution enhancements.

The convective biases shown in Fig. 5 may be rooted

in deficiencies of cumulus parameterization in CFSv2. In

their modeling study with the Met Office UnifiedModel

(MetUM), Martin et al. (2017) proposed that the poor

representation by convective parameterizations of

small-scale processes (e.g., the terrestrial diurnal cycle)

and intraseasonal variability produces the dry and wet

biases over tropical land and sea, respectively. Specifi-

cally, the unrealistically small fractional entrainment/

detrainment rate in convective parameterizations too

readily permits the triggering of deep convection with-

out the slow buildup of shallow cumulus; for the diurnal

cycle, this produces an overly amplified convective peak

that occurs too early in the day, compared to reality

(e.g., Betts and Jakob 2002; Wang et al. 2007). In the

case of CFSv2 and other models, such as MetUM, the

issues with convective entrainment and the terrestrial

diurnal cycle may be responsible for the robust dry bias

over tropical land.

The convective biases in CFSv2 (Fig. 9, top two rows)

are apparent at short leads and time scales, supporting

the notion that they are rooted in parameterized pro-

cesses. The temporal evolution of bias is analyzed by

averaging the absolute value of the daily biases

throughout the tropics (158S–158N) and normalizing by

the value at an arbitrary lead time (here, 35 days).

These time series of normalized mean absolute bias

(Fig. 16) highlight a dichotomy between the evolution

of convection-related biases (CHI200, OLR, PRATE)

and that of other biases (Z500, SST, PWAT). Namely,

we see that the biases in parameters used to diagnose

tropical convection develop very early in the forecast

and change little at longer lead times. Conversely, the

Z500, SST, and PWAT biases evolve almost linearly as

lead time increases. This suggests that cumulus pa-

rameterization has a significant, almost immediate,

impact on the model’s tropical mean state.

We hypothesize that the CFSv2 dry bias over tropical

land (associated with downward motion), rooted in the

FIG. 12. Weekly CHI200 anomalies averaged from 108S to 108N composited about 163 MJO initiation dates (bold dashed line) during

the 1982–2008 period. (left) CFSR reanalyses and subsequent columns are composites of CFSv2 forecasts initialized (from left to right) 0,

10, 20, and 30 days before MJO onset. Stippling indicates statistical significance at a 95% confidence level (via the Student’s t test). Blue,

red, and purple bars above the x axes denote the approximate locations of equatorial Africa, Maritime Continent, and South America,

respectively.

3808 MONTHLY WEATHER REV IEW VOLUME 145

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/26/24 03:59 PM UTC



cumulus parameterization’s poor handling of entrain-

ment and the terrestrial diurnal cycle, forces a com-

pensating wet (upward motion) bias over tropical

oceanic regions to conserve mass. A portion of this wet

oceanic precipitation bias may also be attributed to the

model’s tendency to produce light tropical rain too fre-

quently (Fig. 1), a well-documented issue that is also

associated with the underestimated fractional entrain-

ment rate in cumulus parameterizations (Demott et al.

2007; Stephens et al. 2010). The negativemoisture bias is

seemingly tied to the positive precipitation bias, based

on the spatial coherence between the two (Fig. 9, bottom

two rows). Physically, the increased total precipitation in

the simulated tropical mean state creates a negative

moisture tendency if the normalized gross moist stability,

or the net export ofmoist energy per unit of convection, is

positive in the CFSv2 atmospheric model. The nor-

malized gross moist stability was found to be negative

in the predecessor to the CFSv2, the CFS (Raymond

and Fuchs 2009). If this applies to this generation’s

model as well, then increases in CFSv2 precipitation are

not fully compensated by increases in vertical moisture

advection, because of the unrealistic vertical mass flux

profiles, which are primarily constrained by model

physics, leading to a net gradual depletion of column

moisture. This phenomenon is depicted in the slow

evolution of the PWAT bias relative to the PRATE

bias (Fig. 16, pink and purples lines). Hazra et al. (2016)

suggest that this negative moisture bias could be linked

to a cold tropospheric temperature bias caused by an

upper-level cloud deficit in CFSv2. In any case, there is

considerable evidence presented here and elsewhere

FIG. 13. Lag regression of 1982–2008 weekly and meridionally (58S–58N) averaged OLR (shading) and PWAT (contours; every

0.6 kgm22 excluding 0.0) from CFSR and CFSv2 onto an IO-averaged standardized weekly OLR anomaly time series. Green (pink) lines

and panel text indicate the phase speed (m s21) of local lag regression maxima (minima) for the OLR (PWAT) fields. See text for details.
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suggesting that model biases in tropical convection and

moisture are generated by deficiencies in convective

parameterizations.

Apart from producing errors directly, the forecast

biases outlined in this paper can have many negative

impacts on atmospheric prediction. The stationary

CHI200 anomalies associated with the biases, for in-

stance, can act as Rossby wave sources and excite un-

realistic stationary extratropical teleconnections, thus

degrading midlatitude circulation forecasts. Tropical

biases could also degrade the simulation of propagating

convective features like theMJO. In their study, D. Kim

et al. (2014) suggested that strongly propagating MJO

events tend to follow positive OLR (suppressed con-

vection) anomalies in the equatorial west Pacific, be-

cause the Rossby wave response induced by the dry

anomaly is conducive to positive moisture advection. A

negative west Pacific OLR bias, as noted in CFSv2,

might impede the formation dry anomalies and thus

inhibit the eastward propagation of MJO convection

across the Maritime Continent. This theory was also

posited by Kim et al. (2016) in their analysis of the

ECMWF modeling system.

The biases in moisture outlined above could also

have a detrimental impact on MJO development/

propagation. In the presence of a tropical heating anomaly

such as the MJO, the horizontal advection of mean

moisture by anomalous winds comprises a substantial

fraction of the overall moisture tendency, on which the

growth and propagation of the MJO is dependent

(Adames and Kim 2016). The aforementioned CFSv2

PWAT biases act to weaken the meridional and zonal

gradients in mean moisture, thus reducing the magni-

tude of horizontal moisture advection by MJO circula-

tion. The resultant decline in the overall moisture

tendency degrades the growth and propagation of sim-

ulated MJOs. The combination of the effects listed

above might explain the MJO’s slow propagation speed

and the Maritime Continent barrier effect in CFSv2 and

other models.

b. Moving forward: Convection-permitting
simulations

As noted above, model biases in precipitation,

moisture, and tropical convection may be associated

with flaws in cumulus schemes. It follows that, to

FIG. 14. Wavenumber–frequency diagrams for daily (top left) AVHRR, (top right) CFSR, and (bottom left)

CFSv2 OLR data. Shading is the common logarithm of the raw power spectral density. The green box in each panel

indicates the range of wavenumbers and frequencies used to calculate theEWRabove the top-right corner. (bottom

right) The raw symmetric CFSv2 power relative to that of CFSR (21). Gray lines are the dispersion curves for

Kelvin, equatorial Rossby, inertia gravity, and mixed Rossby–gravity (dashed) waves with equivalent depths of 50,

90, and 200m. The AVHRR power peak at zonal wavenumber ;14 and frequency ;0.12 is an artifact of satellite

aliasing.
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alleviate these biases, convective parameterizations

must either be significantly improved or relinquished

altogether. Indeed, improving aspects of traditional

convective parameterizations such as the fractional

entrainment/detrainment rate does benefit the fore-

casts’ representation of the tropical diurnal cycle

(Wang et al. 2007). Superparameterization, or the

embedding of 2D cloud-resolving models within each

model grid box (Grabowski 2004), has been shown to

improve the mean state of CFSv2 (Mukhopadhyay

et al. 2016). Explicitly simulating convection by fore-

going the use of cumulus parameterization at high

resolution is a more direct way of resolving physical

processes. Recent literature shows that, even at rela-

tively coarse resolution (.10 km), the use of explicit

convection can improve model precipitation distribu-

tions (Holloway et al. 2012) and produce MJOs with

more fidelity than similar runs with parameterized

convection (Pilon et al. 2016). At finer resolutions,

explicit convection can more accurately reproduce the

rainfall diurnal cycle over land (Sato et al. 2009), im-

prove the distribution of tropical deep convection

(Inoue et al. 2008), enhance the propagation charac-

teristics of continental convection (Davis et al. 2003),

and better represent propagating equatorial features

like the MJO (Miura et al. 2007; Miyakawa et al. 2014;

Wang et al. 2015). The apparent ability of convection-

permitting simulations to mitigate the biases associ-

ated with parameterized convection makes them an

attractive option for subseasonal forecasting. By alle-

viating tropical biases and improving representation of

convective features like the MJO, such simulations

may be able to more realistically transfer valuable in-

formation from relatively predictable, low-frequency

tropical phenomena and SST anomalies into the ex-

tratropics through atmospheric teleconnections, thus

improving subseasonal predictive skill globally.

Last, while many of the global models’ shortcomings

have been tied to cumulus parameterization, other pa-

rameterized processes may also contribute to poor

extended forecast skill. For example, microphysics pa-

rameterizations (VanWeverberg et al. 2013) or subgrid

mixing schemes (Holloway et al. 2012) can significantly

impact the fidelity of the forecast. The improvement of

both the microphysics and convection parameteriza-

tions in CFSv2 was shown to improve the predicted

distribution of tropical convection (Abhik et al. 2017).

We focus here on the issues with cumulus parameteri-

zation because convection, unlike microphysical or

turbulent processes, is a phenomenon that we can rea-

sonably resolve in global models using today’s com-

puting resources.

FIG. 15. As in Fig. 14, but for only the symmetric component of the OLR and the power spectra are normalized by

the background red spectra. Contours are signal strength relative to the background spectrum.
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6. Summary and conclusions

This paper presents an objective assessment of CFSv2

deterministic forecast skill on subseasonal time scales.

The 500-hPa geopotential height (Z500) and 200-hPa

velocity potential (CHI200) both maintain skill over

climatology for the first 1–2 weeks of the forecasts, while

monthly to seasonal forecasts offer little or no skill over

climatology. Error saturation occurs later in the CHI200

forecasts than for Z500, indicating extended potential

skill in the tropics. SST, which varies much more slowly

than Z500 and CHI200, is skillful over climatology for

several weeks and exhibits potential skill at lead times

greater than 2 months. The discrepancy between the

times of error saturation and skill loss to climatology can

be explained by conditional biases [i.e., sources of error

other than mean (unconditional) bias and internal var-

iability (Goddard et al. 2013)].

The deterministic skill limits noted above are rela-

tively insensitive to season, though forecasts initialized

in boreal winter maintain slightly higher anomaly cor-

relation (AC) values than those in boreal summer.

Furthermore, there is increased forecast skill at ex-

tended lead times during active El Niño events. The

global patterns of mean absolute error (MAE), AC, and

bias do not change significantly with lead time or the

temporal scale at which the forecast is averaged. The

model’s mean state is shown to be too dry over tropical

land and too wet over the Indian Ocean and western

tropical Pacific. The biases in simulated tropical con-

vection (seen in the CHI200, OLR, and PRATE fields)

do not coincide with SST biases, implying that mean

state errors in tropical convection arise from issues

originating within the atmospheric component of

CFSv2.

As tropical convection and associated teleconnections

are known to play an important role in global atmo-

spheric circulation, we investigated the realism of sim-

ulated tropical convection and its evolution with lead

time. For periods of active convection in the Indo-Pacific

warm pool, the simulated extratropical teleconnection

patterns, and associated patterns of tropical convection,

degrade in predictive skill as lead time increases.

Hovmöller diagrams of individual reforecast periods

reveal that CFSv2 tends to produce slowly propagating

or stationary convective anomalies, a problem that

worsens with increasing lead time. This tendency is il-

lustrated by compositing forecasts about MJO onset

events. As found in other modeling studies, simulated

MJOs exhibit a slower propagation speed than observed

and are generally unable to move east of the Maritime

Continent. The free-running (i.e., beyond the impact of

the initial conditions) CFSv2 wavenumber–frequency

power spectrum features more westward-propagating

convection than observed, exhibits more power at lower

frequencies compared to analyses and observations, is

more ‘‘red’’ than the analyzed/observed spectra, and

lacks distinct power peaks for the MJO and Kelvin

waves.

Some of the forecast deficiencies noted above might

be explained by deficiencies in the tropical mean state in

CFSv2. An unrealistic entrainment/detrainment rate

and perhaps other flaws with conventional convective

parameterization induce a dry convective bias over

tropical land, where the entrainment-sensitive diurnal

cycle in precipitation is quite strong. The model con-

serves mass; thus, an accompanying wet bias over trop-

ical oceanic regions develops concurrently. The model’s

tendency to produce unrealistically light/frequent trop-

ical convection, an issue also rooted in deficiencies

within cumulus parameterizations, likely contributes to

this wet precipitation bias as well. Because tropical

precipitation in the CFSv2 atmospheric model tends to

deplete column-integrated moisture, the wet bias in

precipitation forces the growth of a dry moisture bias in

the deep tropics. These tropical biases influence the

quality of global forecasts in several ways: by creating

extratropical circulation biases through stationary wave

teleconnections, impeding MJO development and propa-

gation by reducing moisture advection, and deteriorating

the structure of other convective phenomena and their

associated extratropical teleconnections.

FIG. 16. Time series of absolute daily reforecast bias averaged

from 158S to 158N for the tropical variables (SST, CHI200, OLR,

PRATE, and PWAT) and from 308 to 708N for Z500. Values are

normalized by the value at lead 35.
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It is suggested that convection-permitting simulations,

which have been shown to reduce biases in the tropical

mean state and improve the realism of propagating

convection in both the tropics and midlatitudes, may

perform better on subseasonal time scales than current

operational global models. Future work should include

running extended, global simulations with convection-

permitting resolution in the tropics, examining the re-

sultant behavior of simulated tropical convection and

teleconnections, and noting changes in the mean state

and extended global forecast skill.
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